利用倒数灰度熵和改进Chan-Vese模型进行SAR河流图像分割

为了进一步提高合成孔径雷达(SAR)图像中河流分割的精度和速度,提出了一种基于人工蜂群优化的倒数灰度熵多阈值选取与改进Chan-Vese(CV)模型相结合的分割方法。考虑SAR图像中河流目标和背景类内灰度的均匀性,提出了基于蜂群优化的倒数灰度熵多阈值选取方法,以此对河流图像进行粗分割;针对基本CV模型收敛速度低、对初始条件敏感的问题,利用图像边缘强度取代Dirac函数,将粗分割结果作为改进CV模型的初始条件,对河流图像进行细分割。大量试验结果表明,所提出的分割方法无须设置初始条件,运行速度快,分割精度高。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:测绘学报 2015, Vol.44 (11), p.1255-1262
1. Verfasser: 吴诗婳 吴一全 周建江 孟天亮
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:为了进一步提高合成孔径雷达(SAR)图像中河流分割的精度和速度,提出了一种基于人工蜂群优化的倒数灰度熵多阈值选取与改进Chan-Vese(CV)模型相结合的分割方法。考虑SAR图像中河流目标和背景类内灰度的均匀性,提出了基于蜂群优化的倒数灰度熵多阈值选取方法,以此对河流图像进行粗分割;针对基本CV模型收敛速度低、对初始条件敏感的问题,利用图像边缘强度取代Dirac函数,将粗分割结果作为改进CV模型的初始条件,对河流图像进行细分割。大量试验结果表明,所提出的分割方法无须设置初始条件,运行速度快,分割精度高。
ISSN:1001-1595
DOI:10.11947/j.AGCS.2015.20140519