利用GOCE卫星轨道数据恢复地球重力场模型的方法

欧空局早期公布的时域法和空域法解算的GOCE模型均采用能量守恒法处理轨道数据,但恢复的长波重力场信号精度较低,而且GOCE 卫星在两极存在数据空白,利用其观测数据恢复重力场模型是一个不适定问题,导致解算的模型带谐项精度较低,需进行正则化处理.本文分析了基于轨道数据恢复重力场模型的方法用于处理GOCE数据的精度,对最优正则化方法和参数的选择进行了研究.利用GOCE卫星2009-11-01-2010-01-31共92d的精密轨道数据,采用不依赖先验信息的能量守恒法、短弧积分法和平均加速度法恢复GOCE 重力场模型,利用Tikhonov正则化技术处理病态问题.结果表明,平均加速度法恢复模型的精度最高...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:测绘学报 2015 (2), p.142-149
1. Verfasser: 苏勇 范东明 游为
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:欧空局早期公布的时域法和空域法解算的GOCE模型均采用能量守恒法处理轨道数据,但恢复的长波重力场信号精度较低,而且GOCE 卫星在两极存在数据空白,利用其观测数据恢复重力场模型是一个不适定问题,导致解算的模型带谐项精度较低,需进行正则化处理.本文分析了基于轨道数据恢复重力场模型的方法用于处理GOCE数据的精度,对最优正则化方法和参数的选择进行了研究.利用GOCE卫星2009-11-01-2010-01-31共92d的精密轨道数据,采用不依赖先验信息的能量守恒法、短弧积分法和平均加速度法恢复GOCE 重力场模型,利用Tikhonov正则化技术处理病态问题.结果表明,平均加速度法恢复模型的精度最高,能量守恒法的精度最低,短弧积分法的精度稍差于平均加速度法.未来联合处理轨道和梯度数据时,建议采用平均加速度法或短弧积分法处理轨道数据,并且轨道数据可有效恢复120阶次左右的模型.Kaula正则化和SOT处理GOCE病态问题的效果最好,并且两者对应的最优正则化参数基本一致,但利用正则化技术不能完全抑制极空白问题的影响,需要联合GRACE等其他数据才能获得理想的结果.
ISSN:1001-1595