Estimates of Dirichlet Eigenvalues for One-Dimensional Fractal Drums
Let Ω,with finite Lebesgue measure |Ω|,be a non-empty open subset of R,and Ω = ∪∞j=1 Ωj,where the open sets Ωj are pairwise disjoint and the boundaryΓ = ?Ω has Minkowski dimension D ∈(0,1).In this paper we study the Dirich-let eigenvalues problem on the domain Ω and give the exact second asymptotic...
Gespeichert in:
Veröffentlicht in: | Analysis in theory & applications 2020-01, Vol.36 (3), p.243-261 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Ω,with finite Lebesgue measure |Ω|,be a non-empty open subset of R,and Ω = ∪∞j=1 Ωj,where the open sets Ωj are pairwise disjoint and the boundaryΓ = ?Ω has Minkowski dimension D ∈(0,1).In this paper we study the Dirich-let eigenvalues problem on the domain Ω and give the exact second asymptotic term for the eigenvalues,which is related to the Minkowski dimension D.Meanwhile,we give sharp lower bound estimates for Dirichlet eigenvalues for such one-dimensional fractal domains. |
---|---|
ISSN: | 1672-4070 1573-8175 |
DOI: | 10.4208/ata.OA-SU7 |