Estimates of Dirichlet Eigenvalues for One-Dimensional Fractal Drums

Let Ω,with finite Lebesgue measure |Ω|,be a non-empty open subset of R,and Ω = ∪∞j=1 Ωj,where the open sets Ωj are pairwise disjoint and the boundaryΓ = ?Ω has Minkowski dimension D ∈(0,1).In this paper we study the Dirich-let eigenvalues problem on the domain Ω and give the exact second asymptotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis in theory & applications 2020-01, Vol.36 (3), p.243-261
Hauptverfasser: Hua Chen, Hua Chen, Jinning Li, Jinning Li
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Ω,with finite Lebesgue measure |Ω|,be a non-empty open subset of R,and Ω = ∪∞j=1 Ωj,where the open sets Ωj are pairwise disjoint and the boundaryΓ = ?Ω has Minkowski dimension D ∈(0,1).In this paper we study the Dirich-let eigenvalues problem on the domain Ω and give the exact second asymptotic term for the eigenvalues,which is related to the Minkowski dimension D.Meanwhile,we give sharp lower bound estimates for Dirichlet eigenvalues for such one-dimensional fractal domains.
ISSN:1672-4070
1573-8175
DOI:10.4208/ata.OA-SU7