Boundedness of High Order Commutators of Riesz Transforms Associated with Schr(o)dinger Type Operators
Let L2 =(-Δ)2 + V2 be the Schr(o)dinger type operator,where V ≠ 0 is a nonnegative potential and belongs to the reverse H(o)lder class RHq1 for q1 > n/2,n ≥5.The higher Riesz transform associated with L2 is denoted by R =▽72L2-1/2 and its dual is denoted by R* =L2-1/2▽2.In this paper,we consider the...
Gespeichert in:
Veröffentlicht in: | 分析、理论与应用(英文版) 2020, Vol.36 (1), p.99-110 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let L2 =(-Δ)2 + V2 be the Schr(o)dinger type operator,where V ≠ 0 is a nonnegative potential and belongs to the reverse H(o)lder class RHq1 for q1 > n/2,n ≥5.The higher Riesz transform associated with L2 is denoted by R =▽72L2-1/2 and its dual is denoted by R* =L2-1/2▽2.In this paper,we consider the m-order commutators[bm,R]and[bm,R*],and establish the (Lp,Lq)-boundedness of these commutators when b belongs to the new Campanato space Δθβ(ρ) and 1/q =1/p-mβ/n. |
---|---|
ISSN: | 1672-4070 |
DOI: | 10.4208/ata.OA-2017-0055 |