Approximation of Generalized Bernstein Operators
This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as follows ωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α), where δn^2(x)=max{φ^2(x),1...
Gespeichert in:
Veröffentlicht in: | Analysis in theory & applications 2014, Vol.30 (2), p.205-213 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | 2 |
container_start_page | 205 |
container_title | Analysis in theory & applications |
container_volume | 30 |
creator | Xiru Yang Chungou Zhang Yingdian Ma |
description | This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as follows
ωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α),
where δn^2(x)=max{φ^2(x),1/n} and 0〈α〈2. |
doi_str_mv | 10.4208/ata.2014.v30.n2.6 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_bjljqyy_e201402006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662138670</cqvip_id><wanfj_id>bjljqyy_e201402006</wanfj_id><sourcerecordid>bjljqyy_e201402006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1046-e7845b22e173daf34bdfad9f2c1201b54b727fb472438e293f2adbb6e154f21e3</originalsourceid><addsrcrecordid>eNo1UMtOAjEUbYwmEuQD3E1cmszY3r6GJRJFExI2um5apsUh2A7t-MCvpxNwdW9uzrnngdAtwRUDXD_oXleACau-Ka48VOICjQiXtKyJ5Jd5FxJKhiW-RpOUWoM5oUKymo8QnnVdDL_tp-7b4IvgioX1Nupd-2eb4tFGn3rb-mLV5WMfYrpBV07vkp2c5xi9Pz-9zV_K5WrxOp8tyzXBTJRW1owbAEskbbSjzDRON1MHa5KdGs6MBOkMk8BobWFKHejGGGEJZw6IpWN0f_r7o73TfqO24Sv6rKjMdrfdHw7KDpExYCwymJzA6xhSitapLuZI8aAIVkNFKlekBrzKFSkPauDcnTkfwW_2bZb4JwkBhNZCYnoEdihmCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximation of Generalized Bernstein Operators</title><source>Alma/SFX Local Collection</source><creator>Xiru Yang Chungou Zhang Yingdian Ma</creator><creatorcontrib>Xiru Yang Chungou Zhang Yingdian Ma</creatorcontrib><description>This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as follows
ωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α),
where δn^2(x)=max{φ^2(x),1/n} and 0〈α〈2.</description><identifier>ISSN: 1672-4070</identifier><identifier>EISSN: 1573-8175</identifier><identifier>DOI: 10.4208/ata.2014.v30.n2.6</identifier><language>chi ; eng</language><publisher>School of Mathematical Sciences, Capital Normal University, Beijing 100048, China%Department of Information Administration, The Central Institute for Correctional Police, Hebei 071000, China</publisher><subject>Bernstein算子 ; SN ; 广义 ; 直接和 ; 运营商 ; 逼近定理</subject><ispartof>Analysis in theory & applications, 2014, Vol.30 (2), p.205-213</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84206A/84206A.jpg</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Xiru Yang Chungou Zhang Yingdian Ma</creatorcontrib><title>Approximation of Generalized Bernstein Operators</title><title>Analysis in theory & applications</title><addtitle>Analysis in Theory and Applications</addtitle><description>This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as follows
ωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α),
where δn^2(x)=max{φ^2(x),1/n} and 0〈α〈2.</description><subject>Bernstein算子</subject><subject>SN</subject><subject>广义</subject><subject>直接和</subject><subject>运营商</subject><subject>逼近定理</subject><issn>1672-4070</issn><issn>1573-8175</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1UMtOAjEUbYwmEuQD3E1cmszY3r6GJRJFExI2um5apsUh2A7t-MCvpxNwdW9uzrnngdAtwRUDXD_oXleACau-Ka48VOICjQiXtKyJ5Jd5FxJKhiW-RpOUWoM5oUKymo8QnnVdDL_tp-7b4IvgioX1Nupd-2eb4tFGn3rb-mLV5WMfYrpBV07vkp2c5xi9Pz-9zV_K5WrxOp8tyzXBTJRW1owbAEskbbSjzDRON1MHa5KdGs6MBOkMk8BobWFKHejGGGEJZw6IpWN0f_r7o73TfqO24Sv6rKjMdrfdHw7KDpExYCwymJzA6xhSitapLuZI8aAIVkNFKlekBrzKFSkPauDcnTkfwW_2bZb4JwkBhNZCYnoEdihmCA</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Xiru Yang Chungou Zhang Yingdian Ma</creator><general>School of Mathematical Sciences, Capital Normal University, Beijing 100048, China%Department of Information Administration, The Central Institute for Correctional Police, Hebei 071000, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2014</creationdate><title>Approximation of Generalized Bernstein Operators</title><author>Xiru Yang Chungou Zhang Yingdian Ma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1046-e7845b22e173daf34bdfad9f2c1201b54b727fb472438e293f2adbb6e154f21e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2014</creationdate><topic>Bernstein算子</topic><topic>SN</topic><topic>广义</topic><topic>直接和</topic><topic>运营商</topic><topic>逼近定理</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiru Yang Chungou Zhang Yingdian Ma</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Analysis in theory & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiru Yang Chungou Zhang Yingdian Ma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation of Generalized Bernstein Operators</atitle><jtitle>Analysis in theory & applications</jtitle><addtitle>Analysis in Theory and Applications</addtitle><date>2014</date><risdate>2014</risdate><volume>30</volume><issue>2</issue><spage>205</spage><epage>213</epage><pages>205-213</pages><issn>1672-4070</issn><eissn>1573-8175</eissn><abstract>This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as follows
ωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α),
where δn^2(x)=max{φ^2(x),1/n} and 0〈α〈2.</abstract><pub>School of Mathematical Sciences, Capital Normal University, Beijing 100048, China%Department of Information Administration, The Central Institute for Correctional Police, Hebei 071000, China</pub><doi>10.4208/ata.2014.v30.n2.6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-4070 |
ispartof | Analysis in theory & applications, 2014, Vol.30 (2), p.205-213 |
issn | 1672-4070 1573-8175 |
language | chi ; eng |
recordid | cdi_wanfang_journals_bjljqyy_e201402006 |
source | Alma/SFX Local Collection |
subjects | Bernstein算子 SN 广义 直接和 运营商 逼近定理 |
title | Approximation of Generalized Bernstein Operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20of%20Generalized%20Bernstein%20Operators&rft.jtitle=Analysis%20in%20theory%20&%20applications&rft.au=Xiru%20Yang%20Chungou%20Zhang%20Yingdian%20Ma&rft.date=2014&rft.volume=30&rft.issue=2&rft.spage=205&rft.epage=213&rft.pages=205-213&rft.issn=1672-4070&rft.eissn=1573-8175&rft_id=info:doi/10.4208/ata.2014.v30.n2.6&rft_dat=%3Cwanfang_jour_cross%3Ebjljqyy_e201402006%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=662138670&rft_wanfj_id=bjljqyy_e201402006&rfr_iscdi=true |