Approximation of Generalized Bernstein Operators

This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as follows ωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α), where δn^2(x)=max{φ^2(x),1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis in theory & applications 2014, Vol.30 (2), p.205-213
1. Verfasser: Xiru Yang Chungou Zhang Yingdian Ma
Format: Artikel
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue 2
container_start_page 205
container_title Analysis in theory & applications
container_volume 30
creator Xiru Yang Chungou Zhang Yingdian Ma
description This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as follows ωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α), where δn^2(x)=max{φ^2(x),1/n} and 0〈α〈2.
doi_str_mv 10.4208/ata.2014.v30.n2.6
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_bjljqyy_e201402006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662138670</cqvip_id><wanfj_id>bjljqyy_e201402006</wanfj_id><sourcerecordid>bjljqyy_e201402006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1046-e7845b22e173daf34bdfad9f2c1201b54b727fb472438e293f2adbb6e154f21e3</originalsourceid><addsrcrecordid>eNo1UMtOAjEUbYwmEuQD3E1cmszY3r6GJRJFExI2um5apsUh2A7t-MCvpxNwdW9uzrnngdAtwRUDXD_oXleACau-Ka48VOICjQiXtKyJ5Jd5FxJKhiW-RpOUWoM5oUKymo8QnnVdDL_tp-7b4IvgioX1Nupd-2eb4tFGn3rb-mLV5WMfYrpBV07vkp2c5xi9Pz-9zV_K5WrxOp8tyzXBTJRW1owbAEskbbSjzDRON1MHa5KdGs6MBOkMk8BobWFKHejGGGEJZw6IpWN0f_r7o73TfqO24Sv6rKjMdrfdHw7KDpExYCwymJzA6xhSitapLuZI8aAIVkNFKlekBrzKFSkPauDcnTkfwW_2bZb4JwkBhNZCYnoEdihmCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximation of Generalized Bernstein Operators</title><source>Alma/SFX Local Collection</source><creator>Xiru Yang Chungou Zhang Yingdian Ma</creator><creatorcontrib>Xiru Yang Chungou Zhang Yingdian Ma</creatorcontrib><description>This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as follows ωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α), where δn^2(x)=max{φ^2(x),1/n} and 0〈α〈2.</description><identifier>ISSN: 1672-4070</identifier><identifier>EISSN: 1573-8175</identifier><identifier>DOI: 10.4208/ata.2014.v30.n2.6</identifier><language>chi ; eng</language><publisher>School of Mathematical Sciences, Capital Normal University, Beijing 100048, China%Department of Information Administration, The Central Institute for Correctional Police, Hebei 071000, China</publisher><subject>Bernstein算子 ; SN ; 广义 ; 直接和 ; 运营商 ; 逼近定理</subject><ispartof>Analysis in theory &amp; applications, 2014, Vol.30 (2), p.205-213</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84206A/84206A.jpg</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Xiru Yang Chungou Zhang Yingdian Ma</creatorcontrib><title>Approximation of Generalized Bernstein Operators</title><title>Analysis in theory &amp; applications</title><addtitle>Analysis in Theory and Applications</addtitle><description>This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as follows ωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α), where δn^2(x)=max{φ^2(x),1/n} and 0〈α〈2.</description><subject>Bernstein算子</subject><subject>SN</subject><subject>广义</subject><subject>直接和</subject><subject>运营商</subject><subject>逼近定理</subject><issn>1672-4070</issn><issn>1573-8175</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1UMtOAjEUbYwmEuQD3E1cmszY3r6GJRJFExI2um5apsUh2A7t-MCvpxNwdW9uzrnngdAtwRUDXD_oXleACau-Ka48VOICjQiXtKyJ5Jd5FxJKhiW-RpOUWoM5oUKymo8QnnVdDL_tp-7b4IvgioX1Nupd-2eb4tFGn3rb-mLV5WMfYrpBV07vkp2c5xi9Pz-9zV_K5WrxOp8tyzXBTJRW1owbAEskbbSjzDRON1MHa5KdGs6MBOkMk8BobWFKHejGGGEJZw6IpWN0f_r7o73TfqO24Sv6rKjMdrfdHw7KDpExYCwymJzA6xhSitapLuZI8aAIVkNFKlekBrzKFSkPauDcnTkfwW_2bZb4JwkBhNZCYnoEdihmCA</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Xiru Yang Chungou Zhang Yingdian Ma</creator><general>School of Mathematical Sciences, Capital Normal University, Beijing 100048, China%Department of Information Administration, The Central Institute for Correctional Police, Hebei 071000, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2014</creationdate><title>Approximation of Generalized Bernstein Operators</title><author>Xiru Yang Chungou Zhang Yingdian Ma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1046-e7845b22e173daf34bdfad9f2c1201b54b727fb472438e293f2adbb6e154f21e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2014</creationdate><topic>Bernstein算子</topic><topic>SN</topic><topic>广义</topic><topic>直接和</topic><topic>运营商</topic><topic>逼近定理</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiru Yang Chungou Zhang Yingdian Ma</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Analysis in theory &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiru Yang Chungou Zhang Yingdian Ma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation of Generalized Bernstein Operators</atitle><jtitle>Analysis in theory &amp; applications</jtitle><addtitle>Analysis in Theory and Applications</addtitle><date>2014</date><risdate>2014</risdate><volume>30</volume><issue>2</issue><spage>205</spage><epage>213</epage><pages>205-213</pages><issn>1672-4070</issn><eissn>1573-8175</eissn><abstract>This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as follows ωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α), where δn^2(x)=max{φ^2(x),1/n} and 0〈α〈2.</abstract><pub>School of Mathematical Sciences, Capital Normal University, Beijing 100048, China%Department of Information Administration, The Central Institute for Correctional Police, Hebei 071000, China</pub><doi>10.4208/ata.2014.v30.n2.6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-4070
ispartof Analysis in theory & applications, 2014, Vol.30 (2), p.205-213
issn 1672-4070
1573-8175
language chi ; eng
recordid cdi_wanfang_journals_bjljqyy_e201402006
source Alma/SFX Local Collection
subjects Bernstein算子
SN
广义
直接和
运营商
逼近定理
title Approximation of Generalized Bernstein Operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20of%20Generalized%20Bernstein%20Operators&rft.jtitle=Analysis%20in%20theory%20&%20applications&rft.au=Xiru%20Yang%20Chungou%20Zhang%20Yingdian%20Ma&rft.date=2014&rft.volume=30&rft.issue=2&rft.spage=205&rft.epage=213&rft.pages=205-213&rft.issn=1672-4070&rft.eissn=1573-8175&rft_id=info:doi/10.4208/ata.2014.v30.n2.6&rft_dat=%3Cwanfang_jour_cross%3Ebjljqyy_e201402006%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=662138670&rft_wanfj_id=bjljqyy_e201402006&rfr_iscdi=true