Approximation of Generalized Bernstein Operators
This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as follows ωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α), where δn^2(x)=max{φ^2(x),1...
Gespeichert in:
Veröffentlicht in: | Analysis in theory & applications 2014, Vol.30 (2), p.205-213 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as follows
ωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α),
where δn^2(x)=max{φ^2(x),1/n} and 0〈α〈2. |
---|---|
ISSN: | 1672-4070 1573-8175 |
DOI: | 10.4208/ata.2014.v30.n2.6 |