Approximation of Generalized Bernstein Operators

This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as follows ωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α), where δn^2(x)=max{φ^2(x),1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis in theory & applications 2014, Vol.30 (2), p.205-213
1. Verfasser: Xiru Yang Chungou Zhang Yingdian Ma
Format: Artikel
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as follows ωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α), where δn^2(x)=max{φ^2(x),1/n} and 0〈α〈2.
ISSN:1672-4070
1573-8175
DOI:10.4208/ata.2014.v30.n2.6