On Submanifolds in Locally Symmetric and Conformally Flat Riemannian Manifolds

Let N^n+p be an (n+p)-dimensional locally symmetric and conformally flat Riemannian manifold and M^n be an n-dimenslonal compact submanifold minimally immersed in N^n+p. Instead of (n+p)-dimensional unit sphere, we generalize Pinching Theorems about submanifolds in unit sphere and get theorems about...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:北京理工大学学报(英文版) 2005-06, Vol.14 (2), p.208-211
1. Verfasser: 孙华飞 汤莉 陈春
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let N^n+p be an (n+p)-dimensional locally symmetric and conformally flat Riemannian manifold and M^n be an n-dimenslonal compact submanifold minimally immersed in N^n+p. Instead of (n+p)-dimensional unit sphere, we generalize Pinching Theorems about submanifolds in unit sphere and get theorems about submanifolds in locally symmetric and conformally flat Riemannian manifold.
ISSN:1004-0579