On Submanifolds in Locally Symmetric and Conformally Flat Riemannian Manifolds
Let N^n+p be an (n+p)-dimensional locally symmetric and conformally flat Riemannian manifold and M^n be an n-dimenslonal compact submanifold minimally immersed in N^n+p. Instead of (n+p)-dimensional unit sphere, we generalize Pinching Theorems about submanifolds in unit sphere and get theorems about...
Gespeichert in:
Veröffentlicht in: | 北京理工大学学报(英文版) 2005-06, Vol.14 (2), p.208-211 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let N^n+p be an (n+p)-dimensional locally symmetric and conformally flat Riemannian manifold and M^n be an n-dimenslonal compact submanifold minimally immersed in N^n+p. Instead of (n+p)-dimensional unit sphere, we generalize Pinching Theorems about submanifolds in unit sphere and get theorems about submanifolds in locally symmetric and conformally flat Riemannian manifold. |
---|---|
ISSN: | 1004-0579 |