Machine-learning-assisted prediction of the mechanical properties of Cu-Al alloy

The machine-learning approach was investigated to predict the mechanical properties of Cu-Al alloys manufactured using the powder metallurgy technique to increase the rate of fabrication and characterization of new materials and provide physical insights into their properties. Six algorithms were us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2020-03, Vol.27 (3), p.362-373
Hauptverfasser: Deng, Zheng-hua, Yin, Hai-qing, Jiang, Xue, Zhang, Cong, Zhang, Guo-fei, Xu, Bin, Yang, Guo-qiang, Zhang, Tong, Wu, Mao, Qu, Xuan-hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The machine-learning approach was investigated to predict the mechanical properties of Cu-Al alloys manufactured using the powder metallurgy technique to increase the rate of fabrication and characterization of new materials and provide physical insights into their properties. Six algorithms were used to construct the prediction models, with chemical composition and porosity of the compacts chosen as the descriptors. The results show that the sequential minimal optimization algorithm for support vector regression with a puk kernel (SMOreg/puk) model demonstrated the best prediction ability. Specifically, its predictions exhibited the highest correlation coefficient and lowest error among the predictions of the six models. The SMOreg/puk model was subsequently applied to predict the tensile strength and hardness of Cu-Al alloys and provide guidance for composition design to achieve the expected values. With the guidance of the SMOreg/puk model, Cu-12Al-6Ni alloy with a tensile strength (390 MPa) and hardness (HB 139) that reached the expected values was developed.
ISSN:1674-4799
1869-103X
DOI:10.1007/s12613-019-1894-6