A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5wt% NaCl solution

Corrosion kinetic parameters play an important role in researchers’ ability to understand and predict corrosion behavior. The corrosion kinetic parameters of structural steel Q345B specimens immersed in 3.5wt% NaCl solution for 1–2 h were determined using linear polarization resistance(LPR), Tafel-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2017-10, Vol.24 (10), p.1112-1124
Hauptverfasser: Cai, Shuang-yu, Wen, Lei, Jin, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Corrosion kinetic parameters play an important role in researchers’ ability to understand and predict corrosion behavior. The corrosion kinetic parameters of structural steel Q345B specimens immersed in 3.5wt% NaCl solution for 1–2 h were determined using linear polarization resistance(LPR), Tafel-curve multiparameter fitting, electrochemical impedance spectroscopy(EIS), and electrochemical frequency modulation(EFM) methods. The advantages and disadvantages of each method were investigated and discussed through comparative investigation. Meanwhile, the average corrosion rate was examined using traditional coupon tests. The results showed that the corrosion current density values estimated by EFM at a base frequency of 0.001 Hz and those obtained by Tafel-curve four-parameter fitting(TC4) are similar and consistent with the results of coupon tests. Because of their slight perturbation of the corrosion system, EIS and EFM/TC4 in collaborative application are the recommended techniques for determining the kinetics and the corresponding parameters for the homogeneous corrosion of the naked metal. In our study of the electrochemical kinetics, we obtained much more abundant and accurate electrochemical kinetic parameters through the combined use of different electrochemical methods.
ISSN:1674-4799
1869-103X
DOI:10.1007/s12613-017-1502-6