Microstructure evolution in grey cast iron during directional solidification
The solidification characteristics and microstructure evolution in grey cast iron were investigated through Jmat-Pro simulations and quenching performed during directional solidification. The phase transition sequence of grey cast iron was determined as L → L + γ→ L + γ + G →γ + G → P(α + Fe3C) + α...
Gespeichert in:
Veröffentlicht in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2017-08, Vol.24 (8), p.884-890 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The solidification characteristics and microstructure evolution in grey cast iron were investigated through Jmat-Pro simulations and quenching performed during directional solidification. The phase transition sequence of grey cast iron was determined as L → L + γ→ L + γ + G →γ + G → P(α + Fe3C) + α + G. The graphite can be formed in three ways: directly nucleated from liquid through the eutectic reaction(L →γ + G), independently precipitated from the oversaturated γ phase(γ→γ + G), and produced via the eutectoid transformation(γ→ G + α). The area fraction and length of graphite as well as the primary dendrite spacing decrease with increasing cooling rate. Type-A graphite is formed at a low cooling rate, whereas a high cooling rate results in the precipitation of type-D graphite. After analyzing the graphite precipitation in the as-cast and transition regions separately solidified with and without inoculation, we concluded that, induced by the inoculant addition, the location of graphite precipitation changes from mainly the γ interdendritic region to the entire γ matrix. It suggests that inoculation mainly acts on graphite precipitation in the γ matrix, not in the liquid or at the solid–liquid front. |
---|---|
ISSN: | 1674-4799 1869-103X |
DOI: | 10.1007/s12613-017-1474-6 |