Superelasticity of Cu–Ni–Al shape-memory fibers prepared by melt extraction technique
In the paper, a melt extraction method was used to fabricate Cu–4Ni–14Al(wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via...
Gespeichert in:
Veröffentlicht in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2016-08, Vol.23 (8), p.928-933 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the paper, a melt extraction method was used to fabricate Cu–4Ni–14Al(wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via scanning electron microscopy(SEM) and a dynamic mechanical analyzer(DMA), respectively. Appropriate heat treatment further improves the plasticity of Cu-based alloys. The serration behavior observed during the loading process is due to the multiple martensite phase transformation. |
---|---|
ISSN: | 1674-4799 1869-103X |
DOI: | 10.1007/s12613-016-1308-y |