Leaching of vanadium, sodium, and silicon from molten V?Ti-bearing slag obtained from low-grade vanadium-bearing titanomagnetite
The water leaching process of vanadium, sodium, and silicon from molten vanadium-titanium-bearing(V-Ti-bearing) slag obtained from low-grade vanadium-bearing titanomagnetite was investigated systematically. The results show that calcium titanate, sodium aluminosilicate, sodium oxide, silicon dioxide...
Gespeichert in:
Veröffentlicht in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2016-08, Vol.23 (8), p.898-905 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The water leaching process of vanadium, sodium, and silicon from molten vanadium-titanium-bearing(V-Ti-bearing) slag obtained from low-grade vanadium-bearing titanomagnetite was investigated systematically. The results show that calcium titanate, sodium aluminosilicate, sodium oxide, silicon dioxide and sodium vanadate are the major components of the molten V-Ti-bearing slag. The experimental results indicate that the liquid-solid(L/S) mass ratio significantly affects the leaching process because of the respective solubilities and diffusion rates of the components. A total of 83.8% of vanadium, 72.8% of sodium, and 16.1% of silicon can be leached out via a triple counter-current leaching process under the optimal conditions of a particle size below 0.074 mm, a temperature of 90°C, a leaching time of 20 min, an L/S mass ratio of 4:1, and a stirring speed of 300 r/min. The kinetics of vanadium leaching is well described by an internal diffusion-controlled model and the apparent activation energy is 11.1 kJ/mol. The leaching mechanism of vanadium was also analyzed. |
---|---|
ISSN: | 1674-4799 1869-103X |
DOI: | 10.1007/s12613-016-1305-1 |