First-principle study on the surface atomic relaxation properties of sphalerite

The surface properties of sphalerite (ZnS) were theoretically investigated using first principle calculations based on the density functional theory (DFT). DFT results indicate that both the (110) and the (220) surfaces of sphalerite undergo surface atom relaxation after geometry optimization, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2012-09, Vol.19 (9), p.775-781
Hauptverfasser: Liu, Jian, Wen, Shu-ming, Xian, Yong-jun, Bai, Shao-jun, Chen, Xiu-min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The surface properties of sphalerite (ZnS) were theoretically investigated using first principle calculations based on the density functional theory (DFT). DFT results indicate that both the (110) and the (220) surfaces of sphalerite undergo surface atom relaxation after geometry optimization, which results in a considerable distortion of the surface region. In the normal direction, i.e., perpendicular to the sur- face, S atoms in the first surface layer move outward from the bulk (dl), whereas Zn atoms move toward the bulk (d2), forming an S-enriched surface. The values of these displacements are 0.003 nm for dl and 0.021 nm for d2 on the (110) surface, and 0.002 nm for dl and 0.011 nm for d2 on the (220) surface. Such a relaxation process is visually interpreted through the qualitative analysis of molecular mechanics. X-ray photoelectron spectroscopic (XPS) analysis provides the evidence for the S-enriched surface. A polysulphide (S n^2- ) surface layer with a bind- ing energy of 163.21 eV is formed on the surface of sphalerite after its grinding under ambient atmosphere. This S-enriched surface and the S 2- surface layer have important influence on the flotation properties ofsphalerite. Keywords:
ISSN:1674-4799
1869-103X
DOI:10.1007/s12613-012-0627-x