Transformation character of ferrite formation by a ledge mechanism under a mixed-control model

A mixed-control model was developed to study the transformation character of ferrite formation by a ledge mechanism. A nu- merical two-dimensional diffusion-field model was combined to describe the evolution of the diffusion field ahead of the migrating austenite/ferrite interface. The calculation r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2012-05, Vol.19 (5), p.428-433
Hauptverfasser: Liu, Zhen-qing, Yang, Zhi-gang, Li, Zhao-dong, Zhang, Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A mixed-control model was developed to study the transformation character of ferrite formation by a ledge mechanism. A nu- merical two-dimensional diffusion-field model was combined to describe the evolution of the diffusion field ahead of the migrating austenite/ferrite interface. The calculation results show that the bulk diffusion-controlled model leads to a deviation from experimental results under large solute supersaturation. In the mixed-control model, solute supersaturation and a parameter Z together determine the transformation character, which is quantified by the normalized concentration of carbon in austenite at the austenite/ferfite interface. By comparing with experimental data, thepre-exponential factor of interface mobility, M0, is estimated within the range from 0.10 to 0.60 mol-m·J^-1·s^-1 for the alloys with 0.1 lwt%-0.49wt% C at 700-740℃. For a certain Fe-C alloy, the trend of the transformation character relies on the magnitude of M0 as the transformation temperature decreases.
ISSN:1674-4799
1869-103X
DOI:10.1007/s12613-012-0574-6