Crystal structure and negative thermal expansion of solid solution Lu2W3-xMoxO12

A new series of solid solutions Lu2W3-xMoxO12 (0.5≤r≤2.5) were successfully synthesized by the solid-state method. Their crystal structure and negative thermal expansion properties were studied using high-temperature X-ray powder diffraction and the Rietveld method. All samples of rare-earth ttmgsta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2010-12, Vol.17 (6), p.786-790
Hauptverfasser: Peng, Jie, Liu, Xin-zhi, Guo, Fu-li, Han, Song-bai, Liu, Yun-tao, Chen, Dong-feng, Hu, Zhong-bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new series of solid solutions Lu2W3-xMoxO12 (0.5≤r≤2.5) were successfully synthesized by the solid-state method. Their crystal structure and negative thermal expansion properties were studied using high-temperature X-ray powder diffraction and the Rietveld method. All samples of rare-earth ttmgstates and molybdates are found to crystallize in the same orthorhombic structure with space group Pnca and show the negative thermal expansion phenomena related to transverse vibration of bridging oxygen atoms in the structure. Thermal expansion coefficients (TEC) of Lu2W3_xMoxO12 are determined as -20.0× 10^-6 K^-1 for x=0.5 and -16.1×10^-6 K^-1 for x=2.5 but -18.6× 10^-6 and -16.9× 10^-6K^-1 for unsubstituted Lu2W3012 and Lu2M03012 in the identical temperature range of 200 to 800℃. High-temperature X-ray diffraction (XRD) data and bond length analysis suggest that the difference between W-O and Mo-O bond is responsible for the change of TECs after the element substitution in this series of solid solutions.
ISSN:1674-4799
1869-103X
DOI:10.1007/s12613-010-0390-9