一种基于卷积神经网络的人脸表情自动识别方法
针对传统机器学习方法在人脸表情识别上存在特征提取繁琐、表情识别准确率不高的问题,提出一种基于深度学习的人脸表情自动识别方法.设计了一个卷积神经网络模型,以原始图像数据为输入,中间以卷积层和池化层交替作为隐层进行特征自动提取,最后将提取到的特征数据映射到全连接层,并采用Softmax函数作为分类器计算分类得分概率,实现人脸表情的自动识别分类.在公开的人脸表情数据集CK+上进行实验,结果表明本文方法能更准确地识别人脸表情....
Gespeichert in:
Veröffentlicht in: | 北方工业大学学报 2019-10, Vol.31 (5), p.51-56 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 针对传统机器学习方法在人脸表情识别上存在特征提取繁琐、表情识别准确率不高的问题,提出一种基于深度学习的人脸表情自动识别方法.设计了一个卷积神经网络模型,以原始图像数据为输入,中间以卷积层和池化层交替作为隐层进行特征自动提取,最后将提取到的特征数据映射到全连接层,并采用Softmax函数作为分类器计算分类得分概率,实现人脸表情的自动识别分类.在公开的人脸表情数据集CK+上进行实验,结果表明本文方法能更准确地识别人脸表情. |
---|---|
ISSN: | 1001-5477 |