Start-up of a cold loop in a VVER-440, the 7th AER benchmark calculation with HEXTRAN-SMABRE-PORFLO
The 7 dynamic AER benchmark is the first in which three-dimensional thermal hydraulics codes are supposed to be applied. The aim is to get a more precise core inlet temperature profile than the sector temperatures available typically with system codes. The benchmark consists of a start-up of the six...
Gespeichert in:
Veröffentlicht in: | Kerntechnik (1987) 2017-09, Vol.82 (4), p.426-435 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The 7
dynamic AER benchmark is the first in which three-dimensional thermal hydraulics codes are supposed to be applied. The aim is to get a more precise core inlet temperature profile than the sector temperatures available typically with system codes. The benchmark consists of a start-up of the sixth, isolated loop in a VVER-440 plant. The isolated loop initially contains cold water without boric acid and the start-up leads to a somewhat asymmetrical core power increase due to feedbacks in the core. In this study, the 7
AER benchmark is calculated with the three-dimensional nodal reactor dynamics code HEXTRAN-SMABRE coupled with the porous computational fluid dynamics code PORFLO. These three codes are developed at VTT. A novel two-way coupled simulation of the 7th AER benchmark was performed successfully demonstrating the feasibility and advantages of the new reactor analysis framework. The modelling issues for this benchmark are reported and some evaluation against the previously reported comparisons between the system codes is provided. |
---|---|
ISSN: | 0932-3902 2195-8580 |
DOI: | 10.3139/124.110820 |