Mahler’s Conjecture on ξ(3/2)nmod 1
K. Mahler’s conjecture: There exists no ∈ ℝ such that the fractional parts { (3/2) } satisfy 0 { (3/2) } < 1/2 for all = 0, 1, 2,... Such a , if exists, is called a Mahler’s -number. In this paper we prove that if is a -number, then the sequence = { (3/2) }, =1, 2,... has asymptotic distribution...
Gespeichert in:
Veröffentlicht in: | Uniform distribution theory 2021-12, Vol.16 (2), p.49-70 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | K. Mahler’s conjecture: There exists no
∈ ℝ
such that the fractional parts {
(3/2)
} satisfy 0
{
(3/2)
} < 1/2 for all
= 0, 1, 2,... Such a
, if exists, is called a Mahler’s
-number. In this paper we prove that if
is a
-number, then the sequence
= {
(3/2)
},
=1, 2,... has asymptotic distribution function
), where
)=1 for
∈ (0, 1]. |
---|---|
ISSN: | 2309-5377 |
DOI: | 10.2478/udt-2021-0007 |