Double-layer microwave absorber based on nanocrystalline CoFe2O4 and CoFe2O4/PANI multi-core/shell composites
Organic-inorganic nano-CoFe /PANI (polyaniline) multi-core/shell composites have been successfully synthesized by chemical oxidative polymerization of aniline. The characterization results showed that the ferrite nanocrystals were efficiently embedded in PANI. The electromagnetic parameters of the c...
Gespeichert in:
Veröffentlicht in: | Materials science--Poland 2017-03, Vol.35 (1), p.94-104 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organic-inorganic nano-CoFe
/PANI (polyaniline) multi-core/shell composites have been successfully synthesized by chemical oxidative polymerization of aniline. The characterization results showed that the ferrite nanocrystals were efficiently embedded in PANI. The electromagnetic parameters of the composites were measured by a vector network analyser in the frequency range of 2 GHz to 18 GHz. Double-layer absorbers based on the CoFe
/PANI composite (matching layer) and calcined CoFe
ferrite (absorbing layer) have been designed. The reflection loss of the microwave absorbers of both single layer and double-layer with a total thickness of 2.0 mm and 2.5 mm was calculated according to transmission-line theory. The results indicated that the minimum reflection loss of the CoFe
/PANI composite was −19.0 dB at 16.2 GHz at the thickness of 2.0 mm and −23.6 dB at 13.1 GHz at the thickness of 2.5 mm, respectively. The minimum reflection loss for double-layer absorbers reached −28.8 dB at 16.2 GHz at the total thickness of 2.0 mm, and −31.1 dB at 12.8 GHz at the total thickness of 2.5 mm. The absorption bandwidth under −10 dB was 4.2 GHz (13.8 GHz to 18.0 GHz) and 5.5 GHz (10.3 GHz to 15.8 GHz), respectively. The results show that the reflection loss and absorption bandwidth of the double-layer absorbers are obviously enhanced compared to corresponding single layer absorbers. |
---|---|
ISSN: | 2083-134X |
DOI: | 10.1515/msp-2017-0010 |