Mechanism of recovery processes for rare earth and iron from Bayan Obo tailings

Rare earth (RE) and iron minerals in tailings exhibit fine embedded granularity and are closely associated with silicates, carbonates, and other lode minerals, which are difficult to be recycled. Studies of these tailings led to some new processes of ore dressing, involving grinding, RE flotation, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of chemical reactor engineering 2020-09, Vol.18 (9), Article 20200077
Hauptverfasser: Guo, Wenliang, Cang, Daqiang, Zhang, Lingling, Guo, Junxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rare earth (RE) and iron minerals in tailings exhibit fine embedded granularity and are closely associated with silicates, carbonates, and other lode minerals, which are difficult to be recycled. Studies of these tailings led to some new processes of ore dressing, involving grinding, RE flotation, strong magnetic separation, and positive iron flotation. In this closed circuit process, RE and iron minerals were separated after grinding, and the materials resulted from the flotation of small-sized RE and iron mineral particles were accurately controlled using a combination of inhibitors, dispersants, pH regulators, and collector agents. The ore dressing were ground to a fineness of 0.045 mm, which was a process accounting for 95.6% of the material. The amount of water glass, NXJ (a combination of sodium carbonate mixed with a fine mud dispersant), and BGH (hydroxamic acid collector, a combination of 3-carboxy-2-naphthylhydroxamic acid and C5-9 hydroxamic acid) used in the primary separation of RE were 2.4 kg/t, 2.5 kg/t, and 2.4 kg/t, respectively. The dosages of ammonium fluorosilicate and GXY (fatty acid collector, a combination of sodium oleate mixed with oxidized paraffin soap) used with iron coarse were 2.2 kg/t and 1.2 kg/t, respectively. The RE collectors achieved chemical separation of Ce, La, and other particles and formed stable five-membered cyclic chelates. Consequently, through the closed circuit experiment, the RE grade and recovery rate in the RE concentrate were improved to 50.3 and 61.6%, respectively. The total iron (TFe) grade and recovery rate in the TFe concentrate were improved to 64.0 and 30.0%, respectively, and other useful metals were also enriched; this process managed secondary recycling of RE and TFe possible, leading to improvements in resource utilization.
ISSN:2194-5748
1542-6580
DOI:10.1515/ijcre-2020-0077