Unique Cartan decomposition for II1 factors arising from arbitrary actions of hyperbolic groups
We prove that for any free ergodic probability measure preserving action of a non-elementary hyperbolic group, or a lattice in a rank one simple Lie group, the associated group measure space II factor has as its unique Cartan subalgebra, up to unitary conjugacy.
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2014-09, Vol.2014 (694), p.215-239 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that for any free ergodic probability measure preserving action
of a non-elementary hyperbolic group, or a lattice in a rank one simple Lie group, the associated group measure space II
factor
has
as its unique Cartan subalgebra, up to unitary conjugacy. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2012-0104 |