Expression of a cassava granule-bound starch synthase gene in the amylose-free potato only partially restores amylose content

Granule-bound starch synthase I (GBSS I) is responsible for the synthesis of amylose in starch granules. A heterologous cassava GBSS I gene was tested for its ability to restore amylose synthesis in amylose-free (amf) potato mutants. For this purpose the cassava GBSS I was equipped with different tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant, cell and environment cell and environment, 1999-10, Vol.22 (10), p.1311-1316
Hauptverfasser: Salehuzzaman, S.N.I.M, Vincken, J.P, Wal, M. van de, Straatman-Engelen, I, Jacobsen, E, Visser, R.G.F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Granule-bound starch synthase I (GBSS I) is responsible for the synthesis of amylose in starch granules. A heterologous cassava GBSS I gene was tested for its ability to restore amylose synthesis in amylose-free (amf) potato mutants. For this purpose the cassava GBSS I was equipped with different transit peptides. In addition, a hybrid containing the potato transit peptide, the N-terminal 89 amino acids of the mature potato GBSS I, and the C-terminal part of cassava GBSS I was prepared. The transgenic starches were first analysed by iodine staining. Only with the hybrid could full phenotypic complementation of the amf mutation be achieved in 13% of the plants. Most transformants showed partial complementation, but interestingly the size of the blue core was similar in all granules derived from one tuber of a given plant. The amylose content was only partially restored, up to 60% of wild-type values or potato GBSS I-complemented plants; however, the GBSS activity in these granules was similar to that found in wild-type ones. From this, and the observation that the hybrid protein (a partial potato GBSS I look-alike) performs best, it was concluded that potato and cassava GBSS I have different intrinsic properties and that the cassava enzyme is not fully adapted to the potato situation.
ISSN:0140-7791
1365-3040
DOI:10.1046/j.1365-3040.1999.00493.x