Convergent evolution of hetero‐oligomeric cellulose synthesis complexes in mosses and seed plants
Summary In seed plants, cellulose is synthesized by rosette‐shaped cellulose synthesis complexes (CSCs) that are obligate hetero‐oligomeric, comprising three non‐interchangeable cellulose synthase (CESA) isoforms. The moss Physcomitrella patens has rosette CSCs and seven CESAs, but its common ancest...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2019-09, Vol.99 (5), p.862-876 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
In seed plants, cellulose is synthesized by rosette‐shaped cellulose synthesis complexes (CSCs) that are obligate hetero‐oligomeric, comprising three non‐interchangeable cellulose synthase (CESA) isoforms. The moss Physcomitrella patens has rosette CSCs and seven CESAs, but its common ancestor with seed plants had rosette CSCs and a single CESA gene. Therefore, if P. patens CSCs are hetero‐oligomeric, then CSCs of this type evolved convergently in mosses and seed plants. Previous gene knockout and promoter swap experiments showed that PpCESAs from class A (PpCESA3 and PpCESA8) and class B (PpCESA6 and PpCESA7) have non‐redundant functions in secondary cell wall cellulose deposition in leaf midribs, whereas the two members of each class are redundant. Based on these observations, we proposed the hypothesis that the secondary class A and class B PpCESAs associate to form hetero‐oligomeric CSCs. Here we show that transcription of secondary class A PpCESAs is reduced when secondary class B PpCESAs are knocked out and vice versa, as expected for genes encoding isoforms that occupy distinct positions within the same CSC. The class A and class B isoforms co‐accumulate in developing gametophores and co‐immunoprecipitate, suggesting that they interact to form a complex in planta. Finally, secondary PpCESAs interact with each other, whereas three of four fail to self‐interact when expressed in two different heterologous systems. These results are consistent with the hypothesis that obligate hetero‐oligomeric CSCs evolved independently in mosses and seed plants and we propose the constructive neutral evolution hypothesis as a plausible explanation for convergent evolution of hetero‐oligomeric CSCs.
Significance Statement
In the moss Physcomitrella patens, as in seed plants, secondary cell wall synthesis requires functionally distinct cellulose synthase catalytic subunits (CESAs) that are co‐expressed and interact to form a complex in vivo. Because the CESA families of mosses and seed plants diversified independently, these results indicated that obligate hetero‐oligomeric cellulose synthesis complexes evolved convergently in these lineages, which can be explained by the constructive neutral evolution hypothesis and has implications for identifying interfaces through which CESA proteins associate to form CSCs. |
---|---|
ISSN: | 0960-7412 1365-313X |
DOI: | 10.1111/tpj.14366 |