Genetic variant predictors of gene expression provide new insight into risk of colorectal cancer

Genome-wide association studies have reported 56 independently associated colorectal cancer (CRC) risk variants, most of which are non-coding and believed to exert their effects by modulating gene expression. The computational method PrediXcan uses cis -regulatory variant predictors to impute expres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human genetics 2019-04, Vol.138 (4), p.307-326
Hauptverfasser: Bien, Stephanie A., Su, Yu-Ru, Conti, David V., Harrison, Tabitha A., Qu, Conghui, Guo, Xingyi, Lu, Yingchang, Albanes, Demetrius, Auer, Paul L., Banbury, Barbara L., Berndt, Sonja I., Bézieau, Stéphane, Brenner, Hermann, Buchanan, Daniel D., Caan, Bette J., Campbell, Peter T., Carlson, Christopher S., Chan, Andrew T., Chang-Claude, Jenny, Chen, Sai, Connolly, Charles M., Easton, Douglas F., Feskens, Edith J. M., Gallinger, Steven, Giles, Graham G., Gunter, Marc J., Hampe, Jochen, Huyghe, Jeroen R., Hoffmeister, Michael, Hudson, Thomas J., Jacobs, Eric J., Jenkins, Mark A., Kampman, Ellen, Kang, Hyun Min, Kühn, Tilman, Küry, Sébastien, Lejbkowicz, Flavio, Le Marchand, Loic, Milne, Roger L., Li, Li, Li, Christopher I., Lindblom, Annika, Lindor, Noralane M., Martín, Vicente, McNeil, Caroline E., Melas, Marilena, Moreno, Victor, Newcomb, Polly A., Offit, Kenneth, Pharaoh, Paul D. P., Potter, John D., Qu, Chenxu, Riboli, Elio, Rennert, Gad, Sala, Núria, Schafmayer, Clemens, Scacheri, Peter C., Schmit, Stephanie L., Severi, Gianluca, Slattery, Martha L., Smith, Joshua D., Trichopoulou, Antonia, Tumino, Rosario, Ulrich, Cornelia M., van Duijnhoven, Fränzel J. B., Van Guelpen, Bethany, Weinstein, Stephanie J., White, Emily, Wolk, Alicja, Woods, Michael O., Wu, Anna H., Abecasis, Goncalo R., Casey, Graham, Nickerson, Deborah A., Gruber, Stephen B., Hsu, Li, Zheng, Wei, Peters, Ulrike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genome-wide association studies have reported 56 independently associated colorectal cancer (CRC) risk variants, most of which are non-coding and believed to exert their effects by modulating gene expression. The computational method PrediXcan uses cis -regulatory variant predictors to impute expression and perform gene-level association tests in GWAS without directly measured transcriptomes. In this study, we used reference datasets from colon ( n  = 169) and whole blood ( n  = 922) transcriptomes to test CRC association with genetically determined expression levels in a genome-wide analysis of 12,186 cases and 14,718 controls. Three novel associations were discovered from colon transverse models at FDR ≤ 0.2 and further evaluated in an independent replication including 32,825 cases and 39,933 controls. After adjusting for multiple comparisons, we found statistically significant associations using colon transcriptome models with TRIM4 (discovery P  = 2.2 × 10 − 4 , replication P  = 0.01), and PYGL (discovery P  = 2.3 × 10 − 4 , replication P  = 6.7 × 10 − 4 ). Interestingly, both genes encode proteins that influence redox homeostasis and are related to cellular metabolic reprogramming in tumors, implicating a novel CRC pathway linked to cell growth and proliferation. Defining CRC risk regions as one megabase up- and downstream of one of the 56 independent risk variants, we defined 44 non-overlapping CRC-risk regions. Among these risk regions, we identified genes associated with CRC ( P  
ISSN:0340-6717
1432-1203
1432-1203
DOI:10.1007/s00439-019-01989-8