Anatomy of Mississippi Delta growth and its implications for coastal restoration

The decline of several of the world's largest deltas has spurred interest in expensive coastal restoration projects to make these economically and ecologically vital regions more sustainable. The success of these projects depends, in part, on our understanding of how delta plains evolve over ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2018-04, Vol.4 (4), p.eaar4740-eaar4740
Hauptverfasser: Chamberlain, Elizabeth L, Törnqvist, Torbjörn E, Shen, Zhixiong, Mauz, Barbara, Wallinga, Jakob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The decline of several of the world's largest deltas has spurred interest in expensive coastal restoration projects to make these economically and ecologically vital regions more sustainable. The success of these projects depends, in part, on our understanding of how delta plains evolve over time scales longer than the instrumental record. Building on a new set of optically stimulated luminescence ages, we demonstrate that a large portion (~10,000 km ) of the late Holocene river-dominated Mississippi Delta grew in a radially symmetric fashion for almost a millennium before abandonment. Sediment was dispersed by deltaic distributaries that formed by means of bifurcations at the coeval shoreline and remained active throughout the life span of this landform. Progradation rates (100 to 150 m/year) were surprisingly constant, producing 6 to 8 km of new land per year. This shows that robust rates of land building were sustained under preindustrial conditions. However, these rates are several times lower than rates of land loss over the past century, indicating that only a small portion of the Mississippi Delta may be sustainable in a future world with accelerated sea-level rise.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aar4740