Probabilistic maize yield prediction over East Africa using dynamic ensemble seasonal climate forecasts

•Simulated reference yields lower than official observed yields except in Tanzania.•Maize production anomalies are predictable at most 3-months before sowing.•Hindcast Yield anomalies are well simulated as opposed to actual yields.•Predicted yields have higher interannual variability compared to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agricultural and forest meteorology 2018-03, Vol.250-251, p.243-261
Hauptverfasser: Ogutu, Geoffrey E.O., Franssen, Wietse H.P., Supit, Iwan, Omondi, P., Hutjes, Ronald W.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Simulated reference yields lower than official observed yields except in Tanzania.•Maize production anomalies are predictable at most 3-months before sowing.•Hindcast Yield anomalies are well simulated as opposed to actual yields.•Predicted yields have higher interannual variability compared to the reference.•Potential exists to predict maize production using a crop model and climate forecasts. We tested the usefulness of seasonal climate predictions for impacts prediction in eastern Africa. In regions where these seasonal predictions showed skill we tested if the skill also translated into maize yield forecasting skills. Using European Centre for Medium-Range Weather Forecasts (ECMWF) system-4 ensemble seasonal climate hindcasts for the period 1981–2010 at different initialization dates before sowing, we generated a 15-member ensemble of yield predictions using the World Food Studies (WOFOST) crop model implemented for water-limited maize production and single season simulation. Maize yield predictions are validated against reference yield simulations using the WATCH Forcing Data ERA-Interim (WFDEI), focussing on the dominant sowing dates in the northern region (July), equatorial region (March-April) and in the southern region (December). These reference yields show good anomaly correlations compared to the official FAO and national reported statistics, but the average reference yield values are lower than those reported in Kenya and Ethiopia, but slightly higher in Tanzania. We use the ensemble mean, interannual variability, mean errors, Ranked Probability Skill Score (RPSS) and Relative Operating Curve skill Score (ROCSS) to assess regions of useful probabilistic prediction. Annual yield anomalies are predictable 2-months before sowing in most of the regions. Difference in interannual variability between the reference and predicted yields range from ±40%, but higher interannual variability in predicted yield dominates. Anomaly correlations between the reference and predicted yields are largely positive and range from +0.3 to +0.6. The ROCSS illustrate good pre-season probabilistic prediction of above-normal and below-normal yields with at least 2-months lead time. From the sample sowing dates considered, we concluded that, there is potential to use dynamical seasonal climate forecasts with a process based crop simulation model WOFOST to predict anomalous water-limited maize yields.
ISSN:0168-1923
1873-2240
DOI:10.1016/j.agrformet.2017.12.256