Downscaling AMSR-2 Soil Moisture Data With Geographically Weighted Area-to-Area Regression Kriging

Soil moisture (SM) plays an important role in the land surface energy balance and water cycle. Microwave remote sensing has been applied widely to estimate SM. However, the application of such data is generally restricted because of their coarse spatial resolution. Downscaling methods have been appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2018-04, Vol.56 (4), p.2362-2376
Hauptverfasser: Jin, Yan, Ge, Yong, Wang, Jianghao, Chen, Yuehong, Heuvelink, Gerard B. M., Atkinson, Peter M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil moisture (SM) plays an important role in the land surface energy balance and water cycle. Microwave remote sensing has been applied widely to estimate SM. However, the application of such data is generally restricted because of their coarse spatial resolution. Downscaling methods have been applied to predict fine-resolution SM from original data with coarse spatial resolution. Commonly, SM is highly spatially variable and, consequently, such local spatial heterogeneity should be considered in a downscaling process. Here, a hybrid geostatistical approach, which integrates geographically weighted regression and area-to-area kriging, is proposed for downscaling microwave SM products. The proposed geographically weighted area-to-area regression kriging (GWATARK) method combines fine-spatial-resolution optical remote sensing data and coarse-spatial-resolution passive microwave remote sensing data, because the combination of both information sources has great potential for mapping fine-spatial-resolution near-surface SM. The GWATARK method was evaluated by producing downscaled SM at 1-km resolution from the 25-km-resolution daily AMSR-2 SM product. Comparison of the downscaled predictions from the GWATARK method and two benchmark methods on three sets of covariates with in situ observations showed that the GWATARK method is more accurate than the two benchmarks. On average, the root-mean-square error value decreased by 20%. The use of additional covariates further increased the accuracy of the downscaled predictions, particularly when using topography-corrected land surface temperature and vegetation-temperature condition index covariates.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2017.2778420