Sharp bends associated with deep scours in a tropical river: The river Mahakam (East Kalimantan, Indonesia)

Autogenic scouring in sharp river bends has received ample attention in laboratory and modeling studies. These studies have significantly advanced our understanding of how flow processes are influenced by strong curvature and how they affect the bathymetry. Here we present a 300 km reach of the Maha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Earth surface 2014-07, Vol.119 (7), p.1441-1454
Hauptverfasser: Vermeulen, B., Hoitink, A. J. F., van Berkum, S. W., Hidayat, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Autogenic scouring in sharp river bends has received ample attention in laboratory and modeling studies. These studies have significantly advanced our understanding of how flow processes are influenced by strong curvature and how they affect the bathymetry. Here we present a 300 km reach of the Mahakam River in Indonesia, which features several sharp bends (W/R > 0.5), providing a unique field data set to validate existing knowledge on sharp bends. Scour depths were found to strongly exceed what can be expected based on existing understanding of sharp bends and are highly correlated with curvature. A comprehensive stream reconnaissance was carried out to compare the occurrence of sharp bends and deep scours with lateral bank migration. Histograms of the occurrence of erosive, stable, advancing, and bar‐type banks as a function of curvature quantify the switch from a mildly curved bend regime to a sharp bend regime. In mild bends, outer banks erode and inner banks advance. In sharp bends the erosion pattern inverts. Outer banks stabilize or advance, while inner banks erode. In sharply curved river bends, bars occur near the outer banks that become less erosive for higher curvatures. Inner banks become more erosive for higher curvatures but nevertheless accommodate the larger portion of exposed bars. No relation was found between the land cover adjacent to the river and the occurrence of sharp bends. Soil processes may play a crucial role in the formation of sharp bends, which is inferred from iron and manganese concretions observed in the riverbanks, indicating ferric horizons and early stages of the formation of plinthic horizons. Historical topographic maps show the planform activity of the river is low, which may relate to the scour holes slowing down planimetric development. Key Points Sharp bends develop deep scours reaching 4 times the average river depth Erosion and deposition patterns invert for high‐curvature reaches Principal component analysis of PALSAR images reveals the meander belt
ISSN:2169-9003
2169-9011
DOI:10.1002/2013JF002923