Molecular dynamics simulation of energy migration between tryptophan residues in apoflavodoxin

Molecular dynamics (MD) simulations over a 30 ns trajectory have been carried out on apoflavodoxin from Azotobacter vinelandii to compare with the published, experimental time-resolved fluorescence anisotropy results of Förster Resonance Energy Transfer (FRET) between the three tryptophan residues....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2014-01, Vol.4 (59), p.31443-31451
Hauptverfasser: Nunthaboot, Nadtanet, Tanaka, Fumio, Kokpol, Sirirat, Visser, Nina V., van Amerongen, Herbert, Visser, Antonie J. W. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular dynamics (MD) simulations over a 30 ns trajectory have been carried out on apoflavodoxin from Azotobacter vinelandii to compare with the published, experimental time-resolved fluorescence anisotropy results of Förster Resonance Energy Transfer (FRET) between the three tryptophan residues. MD analysis of atomic coordinates yielding both the time course of geometric parameters and the time-correlated second-order Legendre polynomial functions reflects immobilization of tryptophans in the protein matrix. However, one tryptophan residue (Trp167) undergoes flip-flop motion on the nanosecond timescale. The simulated time-resolved fluorescence anisotropy of tryptophan residues in apoflavodoxin implying a model of two unidirectional FRET pathways is in very good agreement with the experimental time-resolved fluorescence anisotropy, although the less efficient FRET pathway cannot be resolved and is hidden in the contribution of a slow protein motion.
ISSN:2046-2069
2046-2069
DOI:10.1039/C4RA03779K