Production of guaianolides in Agrobacterium rhizogenes - transformedchicory regenerants flowering in vitro
Chicory (Cichorium intybus L.) is rich in bitter sesquiterpene lactones, mainly guaianolides: lactucin,8-deoxylactucin, lactupicrin and their 11(S),13-dihydroderivatives—compounds recognized for theirantimicrobial and anti-cancer effects. In vitro plant tissue culture, and particularly Agrobacterium...
Gespeichert in:
Veröffentlicht in: | Industrial crops and products 2014, Vol.60 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chicory (Cichorium intybus L.) is rich in bitter sesquiterpene lactones, mainly guaianolides: lactucin,8-deoxylactucin, lactupicrin and their 11(S),13-dihydroderivatives—compounds recognized for theirantimicrobial and anti-cancer effects. In vitro plant tissue culture, and particularly Agrobacteriumrhizogenes—generated hairy root (HR) cultures, have many advantages as systems for production of valu-able secondary metabolites. Although chicory HRs grow better than control culture, having nearly 60times greater fresh weight gain, they do not contain a higher content of guaianolides than wild type(wt) roots. Thus we have established in vitro system comprised of wt root and HR cultures, and wt andtransformed regenerated plants of the same age, in rosette and flowering stage, in order to study theeffects of transformation, organogenesis and flowering on guaianolides production. Both regenerationand flowering in vitro were spontaneous, so the results were not influenced by exogenous growth regu-lators. Some of the transformed clones grew better, but all flowered earlier in comparison to wt plants.Floral transition increased guaianolides content in both roots and leaves of transformed, but not of wtplants. Expression of RolC oncogene correlated with floral transition and with guaianolides accumula-tion. We propose A. rhizogenes—transformed plants at the flowering stage as an alternative source of freeguaianolides, where, in contrast to HRs, entire plants can be used for the extraction. |
---|---|
ISSN: | 0926-6690 1872-633X |