Technical note: Evaluation of an ear-attached movement sensor to record cow feeding behavior and activity
The ability to monitor dairy cow feeding behavior and activity could improve dairy herd management. A 3-dimensional accelerometer (SensOor; Agis Automatisering BV, Harmelen, the Netherlands) has been developed that can be attached to ear identification tags. Based on the principle that behavior can...
Gespeichert in:
Veröffentlicht in: | Journal of dairy science 2014-05, Vol.97 (5), p.2974-2979 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability to monitor dairy cow feeding behavior and activity could improve dairy herd management. A 3-dimensional accelerometer (SensOor; Agis Automatisering BV, Harmelen, the Netherlands) has been developed that can be attached to ear identification tags. Based on the principle that behavior can be identified by ear movements, a proprietary model classifies sensor data as “ruminating,” “eating,” “resting,” or “active.” The objective of the study was to evaluate this sensor on accuracy and precision. First, a pilot evaluation of agreement between 2 independent observers, recording behavior from 3 cows for a period of approximately 9h each, was performed. Second, to evaluate the sensor, the behavior of 15 cows was monitored both visually (VIS) and with the sensor (SENS), with approximately 20h of registration per cow, evenly distributed over a 24-h period, excluding milking. Cows were chosen from groups of animals in different lactation stages and parities. Each minute of SENS and VIS data was classified into 1 of 9 categories (8 behaviors and 1 transition behavior) and summarized into 4 behavioral groups, namely ruminating, eating, resting, or active, which were analyzed by calculating kappa (κ) values. For the pilot evaluation, a high level of agreement between observers was obtained, with κ values of ≥0.96 for all behavioral categories, indicating that visual observation provides a good standard. For the second trial, relationships between SENS and VIS were studied by κ values on a minute basis and Pearson correlation and concordance correlation coefficient analysis on behavior expressed as percentage of total registration time. Times spent ruminating, eating, resting, and active were 42.6, 15.9, 31.6, and 9.9% (SENS) respectively, and 42.1, 13.0, 30.0, and 14.9% (VIS), respectively. Overall κ for the comparison of SENS and VIS was substantial (0.78), with κ values of 0.85, 0.77, 0.86, and 0.47 for “ruminating,” “eating,” “resting,” and “active,” respectively. Pearson correlation and concordance correlation coefficients between SENS and VIS for “ruminating,” “eating,” “resting,” and “active” were 0.93, 0.88, 0.98, and 0.73, and 0.93, 0.75, 0.97, and 0.35, respectively. In conclusion, the results provide strong evidence that the present ear sensor technology can be used to monitor ruminating and resting behavior of freestall-housed dairy cattle. Our results also suggest that this technology shows promise for monitoring eating behavior, whereas more work |
---|---|
ISSN: | 0022-0302 1525-3198 |
DOI: | 10.3168/jds.2013-7560 |