Observed climate-induced changes in plant phenology in the Netherlands

We determined whether climate change in the Netherlands has caused phenological changes since 1868. We analysed over 150,000 plant phenological observations of 320 plant species, obtained by four volunteer networks and one series collected by Mr. Braaksma. With the network data, we compared the timi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regional environmental change 2014-06, Vol.14 (3), p.997-1008
Hauptverfasser: van Vliet, Arnold J. H, Bron, Wichertje A, Mulder, Sara, van der Slikke, Wout, Odé, Baudewijn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We determined whether climate change in the Netherlands has caused phenological changes since 1868. We analysed over 150,000 plant phenological observations of 320 plant species, obtained by four volunteer networks and one series collected by Mr. Braaksma. With the network data, we compared the timing of life cycle events in three different periods: 1894–1932 (Period 1), 1940–1968 (Period 2) and 2001–2010 (Period 3). For the Braaksma series, we compared the periods 1953–1968 (Period A) with 1969–1992 (Period B). We conclude that until the beginning of the 1990s, there have been no significant changes in the timing of life cycle events. The timing of life cycle events in Period 3 showed an average advance of flowering, leaf unfolding and fruit ripening of 14 days compared with Period 1 and 13 days compared with Period 2. Some species have advanced up to over 35 days. Autumn events occurred up to an average of 7 days later in Period 3 compared to earlier periods. This study shows that, based on network data, changes in climate explain on average 66 % of the variation in timing of phenological events from year to year. For the Braaksma data, this is 38 %. The expected future changes in climate will undoubtedly result in a further lengthening of the growing season. We believe that phenological networks, supported by thousands of volunteers, are needed to quantify, analyse, predict and communicate these phenological changes so various sectors in society can adapt to these changes and prevent significant socio-economic impacts.
ISSN:1436-3798
1436-378X
DOI:10.1007/s10113-013-0493-8