Understanding the Extraordinary Ionic Reactivity of Aqueous Nanoparticles
Nanoparticles (NPs) are generally believed to derive their high reactivity from the inherently large specific surface area. Here we show that this is just the trivial part of a more involved picture. Nanoparticles that carry electric charge are able to generate chemical reaction rates that are even...
Gespeichert in:
Veröffentlicht in: | Langmuir 2013-08, Vol.29 (33), p.10297-10302 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanoparticles (NPs) are generally believed to derive their high reactivity from the inherently large specific surface area. Here we show that this is just the trivial part of a more involved picture. Nanoparticles that carry electric charge are able to generate chemical reaction rates that are even substantially larger than those for similar molecular reactants. This is achieved by Boltzmann accumulation of ionic reactants and the Debye acceleration of their transport. The ensuing unique reactivity features are general for all types of nanoparticles but most prominent for soft ones that exploit the accelerating mechanisms on a 3D level. These features have great potential for exploitation in the catalysis of ionic reactions: the reactivity of sites can be enhanced by increasing the indifferent charge density in the NP body. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la401955x |