W-based versus latent variables spatial autoregressive models: evidence from Monte Carlo simulations

In this paper, we compare by means of Monte Carlo simulations two approaches to take spatial autocorrelation into account: the classical spatial autoregressive model and the structural equations model with latent variables. The former accounts for spatial dependence and spillover effects in georefer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of regional science 2011-12, Vol.47 (3), p.619-639
Hauptverfasser: Liu, An, Folmer, Henk, Oud, Johan H. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we compare by means of Monte Carlo simulations two approaches to take spatial autocorrelation into account: the classical spatial autoregressive model and the structural equations model with latent variables. The former accounts for spatial dependence and spillover effects in georeferenced data by means of a spatial weights matrix W. The latter represents spatial dependence and spillover effects by means of a latent variable in the structural (regression) model while the observed spatially lagged variables are related to the latent spatial dependence variable in the measurement model. The simulation results based on Anselin’s Columbus, Ohio, crime data set show that the misspecified latent variables approach slightly trails the correctly specified classical approach in terms of bias and root mean squared error of the coefficient estimators.
ISSN:0570-1864
1432-0592
DOI:10.1007/s00168-010-0398-0