Space-time geostatistics for geography: a case study of radiation monitoring across parts of Germany

Many branches within geography deal with variables that vary not only in space but also in time. Therefore, conventional geostatistics needs to be extended with methods that estimate and quantify spatiotemporal variation and use it in spatiotemporal interpolation and stochastic simulation. This arti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geographical analysis 2010-04, Vol.42 (2)
Hauptverfasser: Heuvelink, G.B.M, Griffith, D.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many branches within geography deal with variables that vary not only in space but also in time. Therefore, conventional geostatistics needs to be extended with methods that estimate and quantify spatiotemporal variation and use it in spatiotemporal interpolation and stochastic simulation. This article briefly summarizes the main concepts of space–time geostatistics. Kriging in space and time can be done in much the same way as it is in a purely spatial setting. The main difficulties are in defining a realistic stochastic model that is assumed to have generated data and in characterizing and estimating the space–time correlation of that model. This article uses a model-based geostatistical approach to characterize space–time variability. The space–time variable of interest is treated as a sum of independent stationary spatial, temporal, and spatiotemporal components, which leads to a sum-metric space–time variogram model. Methods are illustrated with a case study of space–time interpolation of monthly averages of detected background radiation for a 5-year period in four German states.
ISSN:0016-7363
1538-4632
DOI:10.1111/j.1538-4632.2010.00788.x