Fracture and Self-Healing in a Well-Defined Self-Assembled Polymer Network
We studied shear-induced fracture and self-healing of well-defined transient polymer networks formed by telechelic polypeptides, with nodes formed by collagen-like triple helices. When these gels are sheared at a rate that is higher than the inverse relaxation time of the nodes, fracture occurs at a...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2010-04, Vol.43 (7), p.3542-3548 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We studied shear-induced fracture and self-healing of well-defined transient polymer networks formed by telechelic polypeptides, with nodes formed by collagen-like triple helices. When these gels are sheared at a rate that is higher than the inverse relaxation time of the nodes, fracture occurs at a critical stress which increases logarithmically with increasing shear rate. When a constant stress is applied, fracture occurs after a delay time that decreases exponentially with increasing stress. These observations indicate that fracture in these systems is due to stress-activated rupture of triple-helical junctions. After rupture, the physical gels heal completely. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/ma1000173 |