Genome-wide scan for bovine milk-fat composition. I. Quantitative trait loci for short- and medium-chain fatty acids
A genome-wide scan was performed to identify quantitative trait loci (QTL) for short- and medium-chain fatty acids (expressed in wt/wt %). Milk samples were available from 1,905 cows from 398 commercial herds in the Netherlands, and milk-fat composition was measured by gas chromatography. DNA was av...
Gespeichert in:
Veröffentlicht in: | Journal of dairy science 2009-09, Vol.92 (9), p.4664-4675 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A genome-wide scan was performed to identify quantitative trait loci (QTL) for short- and medium-chain fatty acids (expressed in wt/wt %). Milk samples were available from 1,905 cows from 398 commercial herds in the Netherlands, and milk-fat composition was measured by gas chromatography. DNA was available from 7 of the paternal half-sib families: 849 cows and their 7 sires. A genetic map was constructed comprising 1,341 SNP and 2,829 cM, with an average information content of 0.83. Multimarker interval mapping was used in an across-family regression on corrected phenotypes for the 7 half-sib families. Four QTL were found: on Bos taurus autosome (BTA) 6, a QTL was identified for C6:0 and C8:0; on BTA14, a QTL was identified for fat percentage, all odd-chain fatty acids, and C14:0, C16:0, C16:1, and their unsaturation indices; on BTA19, a QTL affected C14:0; and on BTA26, a QTL was identified for the monounsaturated fatty acids and their unsaturation indices. The QTL explained 3 to 19% of phenotypic variance. Furthermore, 49 traits with suggestive evidence for linkage were found on 21 chromosomes. Additional analyses revealed that the QTL on BTA14 was most likely caused by a mutation in DGAT1, whereas the QTL on BTA26 was most likely caused by a mutation in the SCD1 gene. Quantitative trait loci that affect specific fatty acids might increase the understanding of physiological processes regarding fat synthesis and the position of the causal genes. |
---|---|
ISSN: | 0022-0302 1525-3198 |
DOI: | 10.3168/jds.2008-1966 |