Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown Clades

Inference of evolutionary relationships between nematodes is severely hampered by their conserved morphology, the high frequency of homoplasy, and the scarcity of phylum-wide molecular data. To study the origin of nematode radiation and to unravel the phylogenetic relationships between distantly rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 2006-09, Vol.23 (9), p.1792-1800
Hauptverfasser: Holterman, Martijn, van der Wurff, Andre, van den Elsen, Sven, van Megen, Hanny, Bongers, Tom, Holovachov, Oleksandr, Bakker, Jaap, Helder, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inference of evolutionary relationships between nematodes is severely hampered by their conserved morphology, the high frequency of homoplasy, and the scarcity of phylum-wide molecular data. To study the origin of nematode radiation and to unravel the phylogenetic relationships between distantly related species, 339 nearly full-length small-subunit rDNA sequences were analyzed from a diverse range of nematodes. Bayesian inference revealed a backbone comprising 12 consecutive dichotomies that subdivided the phylum Nematoda into 12 clades. The most basal clade is dominated by the subclass Enoplia, and members of the order Triplonchida occupy positions most close to the common ancestor of the nematodes. Crown Clades 8-12, a group formerly indicated as "Secernentea" that includes Caenorhabditis elegans and virtually all major plant and animal parasites, show significantly higher nucleotide substitution rates than the more basal Clades 1-7. Accelerated substitution rates are associated with parasitic lifestyles (Clades 8 and 12) or short generation times (Clades 9-11). The relatively high substitution rates in the distal clades resulted in numerous autapomorphies that allow in most cases DNA barcode-based species identification. Teratocephalus, a genus comprising terrestrial bacterivores, was shown to be most close to the starting point of Secernentean radiation. Notably, fungal feeding nematodes were exclusively found basal to or as sister taxon next to the 3 groups of plant parasitic nematodes, namely, Trichodoridae, Longidoridae, and Tylenchomorpha. The exclusive common presence of fungivorous and plant parasitic nematodes supports a long-standing hypothesis that states that plant parasitic nematodes arose from fungivorous ancestors.
ISSN:0737-4038
1537-1719
DOI:10.1093/molbev/msl044