Do plant parasitic nematodes have differential effects on the productivity of a fast- and a slow-growing grass species?

We have examined the interaction between plant parasitic nematodes and plant species from different stages of grassland succession. In these grasslands, fertiliser application was stopped in order to restore the former nutrient-poor ecosystems. This management resulted in a reversed succession of hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and soil 2002-06, Vol.243 (1), p.81-90
Hauptverfasser: Verschoor, B.C., de Goede, R.G.M., Brussaard, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have examined the interaction between plant parasitic nematodes and plant species from different stages of grassland succession. In these grasslands, fertiliser application was stopped in order to restore the former nutrient-poor ecosystems. This management resulted in a reversed succession of high- to low-productivity. Nematodes isolated from a high-productive early-successional field and a low-productive late-successional field were inoculated to sterilised soil planted with seedlings of either Lolium perenne (a fast-growing early-successional species) or Festuca rubra (a slow-growing late-successional species). The experiment was performed at low and high supply rates of nutrients. We hypothesised that at a low nutrient supply rate the growth of L. perenne will be more reduced by nematode herbivory than the growth of F. rubra. Furthermore, we hypothesised that higher numbers of plant parasitic nematodes will develop under L. perenne. We found no support for our first hypothesis, because nematodes did not affect plant growth. Our results suggest that changes in the nutrient availability rather than plant parasitic nematodes affect plant succession in impoverished grasslands. On the other hand, plant species and nutrient supply rate significantly affected the density and composition of the plant parasitic nematode community. In line with our second hypothesis, plant parasitic nematodes reproduced better on the fast-growing L. perenne than on the slow-growing F. rubra. Our results, therefore, suggest that the succession of the plant parasitic nematode community is probably more affected by changes in the plant community than the other way round.
ISSN:0032-079X
1573-5036
DOI:10.1023/A:1019913417792