Recovering Scale in Relative Pose and Target Model Estimation Using Monocular Vision
A combined relative pose and target object model estimation framework using a monocular camera as the primary feedback sensor has been designed and validated in a simulated robotic environment. The monocular camera is mounted on the end-effector of a robot manipulator and measures the image plane co...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A combined relative pose and target object model estimation framework using a monocular camera as the primary feedback sensor has been designed and validated in a simulated robotic environment. The monocular camera is mounted on the end-effector of a robot manipulator and measures the image plane coordinates of a set of point features on a target workpiece object. Using this information, the relative position and orientation, as well as the geometry, of the target object are recovered recursively by a Kalman filter process. The Kalman filter facilitates the fusion of supplemental measurements from range sensors, with those gathered with the camera. This process allows the estimated system state to be accurate and recover the proper environment scale.
Current approaches in the research areas of visual servoing control and mobile robotics are studied in the case where the target object feature point geometry is well-known prior to the beginning of the estimation. In this case, only the relative pose of target object frames is estimated over a sequence of frames from a single monocular camera. An observability analysis was carried out to identify the physical configurations of camera and target object for which the relative pose cannot be recovered by measuring only the camera image plane coordinates of the object point features.
A popular extension to this is to concurrently estimate the target object model concurrently with the relative pose of the camera frame, a process known as Simultaneous Localization and Mapping (SLAM). The recursive framework was augmented to facilitate this larger estimation problem. The scale of the recovered solution is ambiguous using measurements from a single camera. A second observability analysis highlights more configurations for which the relative pose and target object model are unrecoverable from camera measurements alone. Instead, measurements which contain the global scale are required to obtain an accurate solution.
A set of additional sensors are detailed, including range finders and additional cameras. Measurement models for each are given, which facilitate the fusion of this supplemental data with the original monocular camera image measurements. A complete framework is then derived to combine a set of such sensor measurements to recover an accurate relative pose and target object model estimate.
This proposed framework is tested in a simulation environment with a virtual robot manipulator tracking a target object w |
---|