On the evaluation of some sparse polynomials

We give algorithms for the evaluation of sparse polynomials of the form P=p0 + p1 x + p2 x^4 + ... + p_{n-1} x^{(N-1)^2} for various choices of coefficients . First, we take p_i=p^i, for some fixed p; in this case, we address the question of fast evaluation at a given point in the base ring, and we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schost, Eric, Nogneng, Dorian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give algorithms for the evaluation of sparse polynomials of the form P=p0 + p1 x + p2 x^4 + ... + p_{n-1} x^{(N-1)^2} for various choices of coefficients . First, we take p_i=p^i, for some fixed p; in this case, we address the question of fast evaluation at a given point in the base ring, and we obtain a cost quasi-linear in sqrt{N}. We present experimental results that show the good behavior of this algorithm in a floating-point context, for the computation of Jacobi theta functions. Next, we consider the case of arbitrary coefficients; for this problem, we study the question of multiple evaluation: we show that one can evaluate such a polynomial at N values in the base ring in subquadratic time.