On the evaluation of some sparse polynomials
We give algorithms for the evaluation of sparse polynomials of the form P=p0 + p1 x + p2 x^4 + ... + p_{n-1} x^{(N-1)^2} for various choices of coefficients . First, we take p_i=p^i, for some fixed p; in this case, we address the question of fast evaluation at a given point in the base ring, and we...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give algorithms for the evaluation of sparse polynomials of the form P=p0 + p1 x + p2 x^4 + ... + p_{n-1} x^{(N-1)^2}
for various choices of coefficients . First, we take p_i=p^i, for some fixed p; in this case, we address the question of fast evaluation at a given point in the base ring, and we obtain a cost quasi-linear in sqrt{N}. We present experimental results that show the good behavior of this algorithm in a floating-point context, for the computation of Jacobi theta functions.
Next, we consider the case of arbitrary coefficients; for this problem, we study the question of multiple evaluation: we show that one can evaluate such a polynomial at N values in the base ring in subquadratic time. |
---|