Which classes of structures are both pseudo-elementary and definable by an infinitary sentence?
When classes of structures are not first-order definable, we might still try to find a nice description. There are two common ways for doing this. One is to expand the language, leading to notions of pseudo-elementary classes, and the other is to allow infinite conjuncts and disjuncts. In this paper...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Dissertation |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When classes of structures are not first-order definable, we might still try to find a nice description. There are two common ways for doing this. One is to expand the language, leading to notions of pseudo-elementary classes, and the other is to allow infinite conjuncts and disjuncts. In this paper we examine the intersection. Namely, we address the question: Which classes of structures are both pseudo-elementary and Lω1,ω-elementary? We find that these are exactly the classes that can be defined by an infinitary formula that has no infinitary disjunctions.
Natural Sciences and Engineering Research Council Discovery Grant 312501 || Natural Sciences and Engineering Research Council Banting Fellowship |
---|