Computability Theory and Some Applications

We explore various areas of computability theory, ranging from applications in computable structure theory primarily focused on problems about computing isomorphisms, to a number of new results regarding the degree-theoretic notion of the bounded Turing hierarchy. In Chapter 2 (joint with Csima, Har...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Deveau, Michael
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore various areas of computability theory, ranging from applications in computable structure theory primarily focused on problems about computing isomorphisms, to a number of new results regarding the degree-theoretic notion of the bounded Turing hierarchy. In Chapter 2 (joint with Csima, Harrison-Trainor, Mahmoud), the set of degrees that are computably enumerable in and above $\mathbf{0}^{(\alpha)}$ are shown to be degrees of categoricity of a structure, where $\alpha$ is a computable limit ordinal. We construct such structures in a particularly useful way: by restricting the construction to a particular case (the limit ordinal $\omega$) and proving some additional facts about the widgets that make up the structure, we are able to produce a computable prime model with a degree of categoricity as high as is possible. This then shows that a particular upper bound on such degrees is exact. In Chapter 3 (joint with Csima and Stephenson), a common trick in computable structure theory as it relates to degrees of categoricity is explored. In this trick, the degree of an isomorphism between computable copies of a rigid structure is often able to be witnessed by the clever choice of a computable set whose image or preimage through the isomorphism actually attains the degree of the isomorphism itself. We construct a pair of computable copies of $(\omega,