The Influence of Mitigation on Sage-Grouse Habitat Selection within an Energy Development Field
Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre-and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nestlocation data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density beta = 0.18 +/- 0.08) than the pre-mitigation models (well density beta = -0.09 +/- 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km(2) and the majority of nests (63%) were located in areas with |
---|