Construction Scene Point Cloud Acquisition, Object Finding and Clutter Removal in Real Time

Within industrial construction, piping can constitute up to 50% of the cost of a typical project. It has been shown that across the activities involved in pipe fabrication, pipe fitting has the highest impact on the critical path. The pipe fitter is responsible for interpreting the isometric drawing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Sharif, Mohammad-Mahdi
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Within industrial construction, piping can constitute up to 50% of the cost of a typical project. It has been shown that across the activities involved in pipe fabrication, pipe fitting has the highest impact on the critical path. The pipe fitter is responsible for interpreting the isometric drawing and then performing the tack welds on piping components so that the assembly complies with the design. Three main problems in doing this task are identified as: (1) reading and interpreting the isometric drawing is challenging and error prone for spatially complicated assemblies, (2) in assemblies with tight allowable tolerance, a number of iterations will take place to fit the pipes with compliance to the design. These iterations (rework) will remain unrecorded in the production process, and (3) no continuous measurement tool exists to let the fitter check his/her work in progress against the design information and acceptance specifications. Addressing these problems could substantially improve pipe fitters’ productivity. The objective of this research is to develop a software package integrating a threefold solution to simplify complex tasks involved in pipe fabrication: (1) making design information easier to understand, with the use of a tablet, 3D imaging device and an application software, (2) providing visual feedback on the correctness of fabrication between the design intent and the as-built state, and (3) providing frequent feedback on fabrication using a step-by-step assembly and control framework. The step-by-step framework will reduce the number of required iterations for the pipe fitter. A number of challenges were encountered in order to provide a framework to make real time, visual and frequent feedback. For frequent and visual feedback, a real time 3D data acquisition tool with an acceptable level of accuracy should be adopted. This is due to the speed of fabrication in an industrial facility. The second challenge is to find the object of interest in real time, once a point cloud is acquired, and finally, once the object is found, to optimally remove points that are considered as clutter to improve the visual feedback for the pipe fitters. To address the requirement for a reliable and real time acquisition tool, Chapter 3 explores the capabilities and limitations of low cost range cameras. A commercially available 3D imaging tool was utilized to measure its performance for real time point cloud acquisition. The device was used to inspect two pi