Modification of contact lenses via metal-organic frameworks for glaucoma treatment
The prevention of blindness from glaucoma requires multiple treatments to lower intraocular pressure. Here, human contact lenses are modified with highly porous metal-organic frameworks with sustained release of brimonidine for prolonged glaucoma treatment. Various metal-organic frameworks were scre...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The prevention of blindness from glaucoma requires multiple treatments to lower intraocular pressure. Here, human contact lenses are modified with highly porous metal-organic frameworks with sustained release of brimonidine for prolonged glaucoma treatment. Various metal-organic frameworks were screened for their attachment to lenses, loading with brimonidine, and drug-release properties. Optimized therapeutic ocular lenses conjugated with MIL-101(Cr) frameworks maintain optical transparency and power. Coating of lenses with MIL-101(Cr) nanoparticles reduced brimonidine washout with tears and ensured a gradual and localized release of the drug into the eyeball through the cornea. The hybrid lenses provided a 4.5-fold better decrease in eye pressure, compared by area under the curve (AUC) value to a commercially available brimonidine tartrate solution. Therapeutic lenses did not induce any notable eye irritation or corneal damage in vivo. The newly developed hybrid lenses are expected to provide a robust platform for the therapy and prevention of various ocular diseases. |
---|---|
DOI: | 10.1002/agt2.586 |