The persistence of a relative Rabinowitz-Floer complex

We give a quantitative refinement of the invariance of the Legendrian contact homology algebra in general contact manifolds. We show that in this general case, the Lagrangian cobordism trace of a Legendrian isotopy defines a DGA stable tame isomorphism, which is similar to a bifurcation invariance p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dimitroglou Rizell, Georgios, Sullivan, Michael G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a quantitative refinement of the invariance of the Legendrian contact homology algebra in general contact manifolds. We show that in this general case, the Lagrangian cobordism trace of a Legendrian isotopy defines a DGA stable tame isomorphism, which is similar to a bifurcation invariance proof for a contactization contact manifold. We use this result to construct a relative version of the Rabinowitz-Floer complex defined for Legendrians that also satisfies a quantitative invariance, and study its persistent homology barcodes. We apply these barcodes to prove several results, including: displacement energy bounds for Legendrian submanifolds in terms of the oscillatory norms of the contact Hamiltonians; a proof of Rosen and Zhang's nondegeneracy conjecture for the Shelukhin-Chekanov-Hofer metric on Legendrian submanifolds; and the nondisplaceability of the standard Legendrian real-projective space inside the contact real-projective space.
DOI:10.2140/gt.2024.28.2145