Independent isotopic fission yields of Cf-252 spontaneous fission via mass measurements at the FRS Ion Catcher

We present first preliminary results of a novel method for measuring independent isotopic fission yields (IIFYs) of spontaneous fission (SF) via direct mass measurements, at the FRS Ion Catcher (FRS -IC) at GSI. Fission products were generated from a Cf-252 source installed in a cryogenic stopping c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Waschitz, Y, Amanbayev, D, Spataru, A, Mardor, I, Dickel, T, Cohen, E. O, Aviv, O, Andres, S. Ayet San, Balabanski, D. L, Beck, S, Bergmann, J, Brencic, Z, Constantin, P, Dehghan, M, Geissel, H, Groef, L, Hornung, C, Kalantar-Nayestanaki, N, Kripko-Koncz, G, Miskun, I, Mollaebrahimi, A, Nichita, D, Plass, W. R, Pomp, Stephan, Scheidenberger, C, Solders, Andreas, Stanic, G, Wasserhess, M, Vencelj, M, Zhao, J
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present first preliminary results of a novel method for measuring independent isotopic fission yields (IIFYs) of spontaneous fission (SF) via direct mass measurements, at the FRS Ion Catcher (FRS -IC) at GSI. Fission products were generated from a Cf-252 source installed in a cryogenic stopping cell, and were identified and counted with the multiple-reflection time-of-flight mass spectrometer (MR-TOR-MS) of the FRS-IC, utilizing well-established measurement and data analysis methods. The MR-TOR-MS resolves isobars unambiguously, even with limited statistics, and its non-scanning nature ensures minimal relative systematic uncertainties amongst fission products. The analysis for extracting IIFYs includes isotope-dependent efficiency corrections for all components of the FRS -IC. In particular, we applied a self-consistent technique that takes into account the element-dependent survival efficiencies in the CSC, due to chemical reactions with the buffer gas. Our IIFY results, which cover several tens of fission products in the less -accessible high-mass peak (Z = 56 to 63) down to fission yields at the level of 10(-5), are generally similar to those of the nuclear database ENDF/B-VII.O. Nevertheless, they reveal some structures that are not observed in the database smooth trends. These are the first results of a planned campaign to investigate IIFY distributions of spontaneous fission at the FRS-IC. Upcoming experiments will extend our results to wider Z and N ranges, lower fission yields, and other spontaneously-fissioning actinides.
DOI:10.1051/epjconf/202328404005