Symmetry-protected Bose-Einstein condensation of interacting hardcore bosons
The large practical potential of exotic quantum states is often precluded by their notorious fragility against external perturbations or temperature. Here, we introduce a mechanism stabilizing a one-dimensional quantum many-body phase exploiting an emergent Z(2) -symmetry based on a simple geometric...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The large practical potential of exotic quantum states is often precluded by their notorious fragility against external perturbations or temperature. Here, we introduce a mechanism stabilizing a one-dimensional quantum many-body phase exploiting an emergent Z(2) -symmetry based on a simple geometrical modification, i.e. a site that couples to all lattice sites. We illustrate this mechanism by constructing the solution of the full quantum many-body problem of hardcore bosons on a wheel geometry, which are known to form Bose-Einstein condensates. The robustness of the condensate against interactions is shown numerically by adding nearest-neighbor interactions, which typically destroy Bose-Einstein condensates. We discuss further applications such as geometrically inducing finite-momentum condensates. Since our solution strategy is based on a generic mapping, our findings are applicable in a broader context, in which a particular state should be protected, by introducing an additional center site. |
---|---|
DOI: | 10.1038/s42005-023-01303-z |