dZ-Cluster tilting subcategories of singularity categories

For an exact category E with enough projectives and with a dZ-cluster tilting subcategory, we show that the singularity category of E admits a dZ-cluster tilting subcategory. To do this we introduce cluster tilting subcategories of left triangulated categories, and we show that there is a correspond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kvamme, Sondre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For an exact category E with enough projectives and with a dZ-cluster tilting subcategory, we show that the singularity category of E admits a dZ-cluster tilting subcategory. To do this we introduce cluster tilting subcategories of left triangulated categories, and we show that there is a correspondence between cluster tilting subcategories of E and E. We also deduce that the Gorenstein projectives of E admit a dZ-cluster tilting subcategory under some assumptions. Finally, we compute the dZ-cluster tilting subcategory of the singularity category for a finite-dimensional algebra which is not Iwanaga-Gorenstein.
DOI:10.1007/s00209-020-02534-4