dZ-Cluster tilting subcategories of singularity categories
For an exact category E with enough projectives and with a dZ-cluster tilting subcategory, we show that the singularity category of E admits a dZ-cluster tilting subcategory. To do this we introduce cluster tilting subcategories of left triangulated categories, and we show that there is a correspond...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an exact category E with enough projectives and with a dZ-cluster tilting subcategory, we show that the singularity category of E admits a dZ-cluster tilting subcategory. To do this we introduce cluster tilting subcategories of left triangulated categories, and we show that there is a correspondence between cluster tilting subcategories of E and E. We also deduce that the Gorenstein projectives of E admit a dZ-cluster tilting subcategory under some assumptions. Finally, we compute the dZ-cluster tilting subcategory of the singularity category for a finite-dimensional algebra which is not Iwanaga-Gorenstein. |
---|---|
DOI: | 10.1007/s00209-020-02534-4 |